

Circular Economy Roadmap for Germany

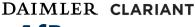
Who is the Circular Economy Initiative Germany?

Federal Ministry of Education and Research

Federal Ministry for the **Environment, Nature Conservation** and Nuclear Safety

Federal Ministry for Economic Affairs and Energy

Office



Business

ALPLA

Stiftung

GRS Batterien

Helmholtz Institute Freiberg for Resource Technology

TU Clausthal

Borderstep Institute for

Innovation and Sustainability

Civil society and other institutions

RLG

Why is the topic of the Circular Economy so relevant?

Resource Consumption

1,6 Earths

of resources per year are currently consumed by humanity.

would be consumed per year if resource consumption in Germany was equal to the global average.

Planetary Load

50%

of global greenhouse gas emissions of global biodiversity loss and water stress

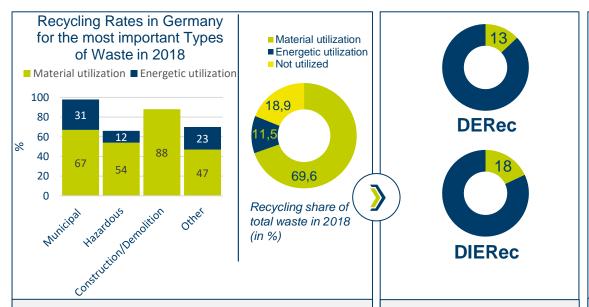
90%

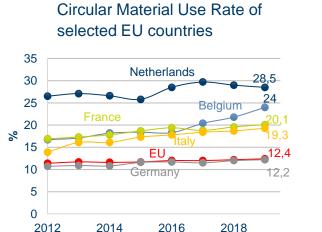
are caused by the extraction and processing of natural resources.

Economic Responsibility

7-14%

of global economic output could be lost in 2100 in the absence of an ambitious climate policy.

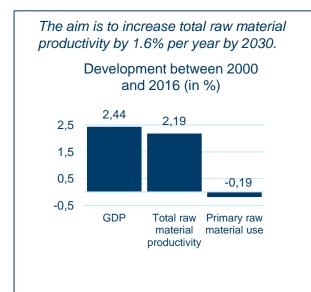



of the total volume of German imports is accounted for by raw materials.

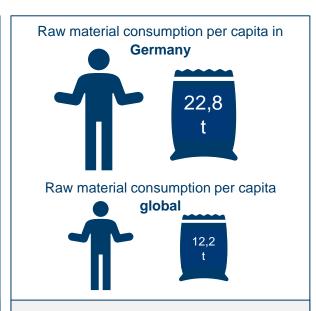
Sources: Earth Overshoot Day 2020a, Earth Overshoot Day 2020b, International Resource Panel 2019, Kalkuhl/Wenz 2020, Lutter et al. 2018 Images: Kateryna Babaieva , Robert Larsson, Eko Pramono

The transformation from a circular waste management to a circular economy is still pending in Germany

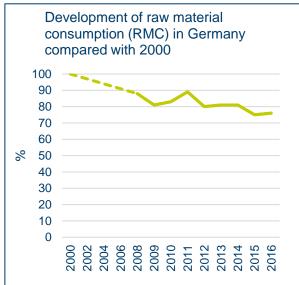
Overall **high recycling rates**, but (still) based on input quantities; output quality is not taken into account. The total volume of waste reached a new high in 2018.


Resource savings through the use of secondary raw materials are around 13% (DERec) and 18% (DIERec, including global upstream chains).

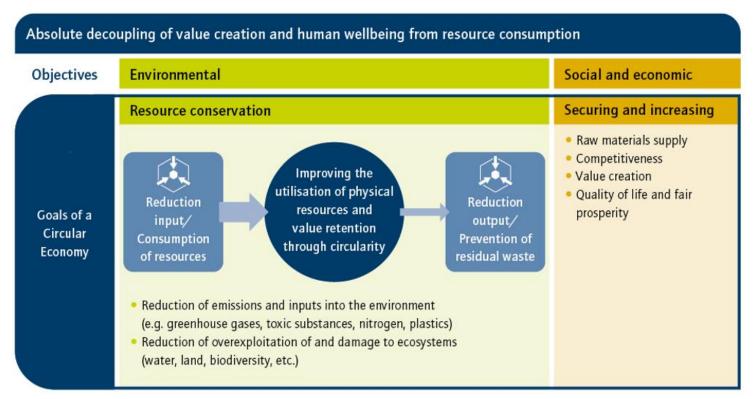
In an EU comparison, Germany is still below the average value of all EU countries despite a moderate increase in the circular material use rate.


Sources: Statistisches Bundesamt 2020, UBA 2020a, Steger et al. 2019, Eurostat 2020

In Germany, resource consumption has yet not decoupled from economic growth

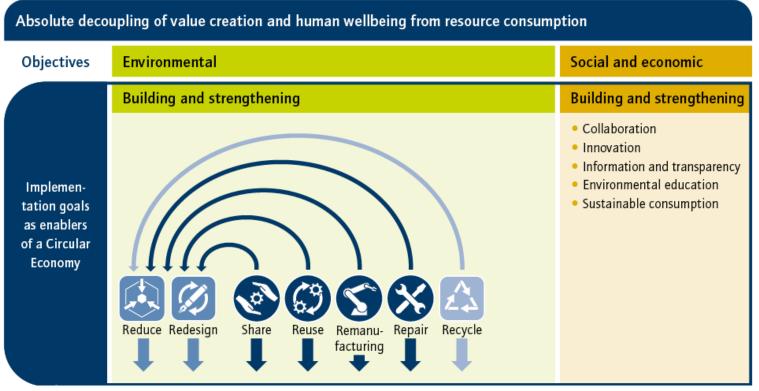


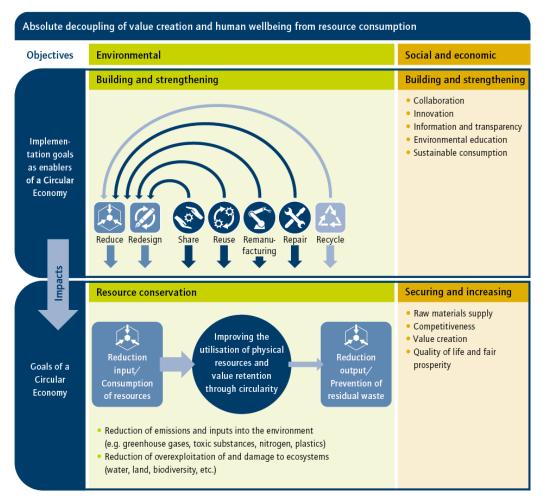
From 2000 to 2016, growth averaged **2.2%**. The increase was almost exclusively due to GDP growth.


Raw material consumption in Germany is still almost **twice the global average**.

Since 2009, **no clear development trend** can be discerned.

A Circular Economy is not an end in itself - but what goals should it contribute to?

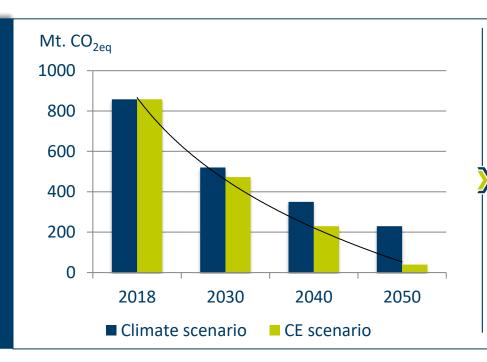



Source: Framework based on Koch/Coelho Megale 2020

A Circular Economy is not an end in itself - but what goals should it contribute to?

Source: Framework based on Koch/Coelho Megale 2020

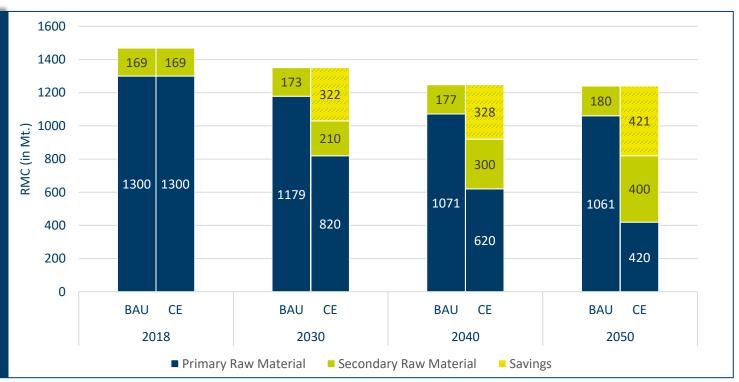
Source: Framework


Megale 2020

based on Koch/Coelho

Reducing greenhouse gas emissions: Circular economy levers could help close the gap to achieving greenhouse gas neutrality

Development of greenhouse gas emissions in the circular economy scenario (CE) compared with the climate scenario (business-asusual, BAU)


Circular Economy levers:

- Life cycle extension
- Product use intensification
 - Increased recycling (incl. increased energy efficiency)

Reducing resource consumption: Circular economy measures could enable resource savings of 68 percent in 2050

Resource
consumption in
Germany in the
Circular Economy
(CE) scenario
compared to the
climate scenario
(Business-asUsual, BAU)

The Circular Economy Roadmap synthesizes the findings and recommendations of the three working groups

Social perspective

Sociotechnical perspective

Business model perspective

Product perspective

- Social and cultural change (e.g. repair culture)
- Political framework conditions
- Technical development
- Value networks
- Circular business models
- Relationships with customers/partners
- Internal awareness of CE
- Hardware
- Software

Perspectives of the Business Models working group

- Implement design for circularity to put different R strategies into practice
- Use **digital technologies** for effective practical implementation of design for circularity

Product

Socitechnical

- Set economic incentives (overhaul of tax regulations, carbon pricing, dismantling of subsidies)
- Introduce mandatory standards and strengthen extended producer responsibility
- Increase demand through public procurement
- Accelerate material, process, digital and business model innovations with environmental benefit
- Support the development of quality standards

Overview of potential solutions from the Business Models working group

See the working group's findings report for complete contents

- Support changes in stakeholder positioning (in particular vertical integration and networking)
- Accelerate embedding of stakeholders in value networks/cycles
- Combine different Circular Economy strategies and service levels
- Exploit the potential of digital technologies and create innovation spaces

Business model

Society

- Establish new formats for participation and promote individual initiatives and social innovation
- Ensure transparency by product labelling and declarations
- Create education and training programmes as a basis for circular awareness.
- Establish an institution to consolidate scientific insights, industrial practice and societal needs

Perspectives of the Business Models working group

Figure.: Ecosystem Perspective on CBM and example, Source: own presentation, based on Konietzko et al. 2020b | Image: Pixabay

Perspectives of the Packaging working group

- Implement design for circularity for efficient and effective resource management
- Create a uniform basis for evaluating the sustainability of packaging alternatives
- Invest in sorting and recycling technology and its further development

Product

- Sociotechnical
- Set economic incentives
- Pick up the pace of **packaging material harmonisation**
- Offer support and incentives for consumers
- Offer specialised education and training (e.g. for industrial designers)

Overview of potential solutions proposed by the **Packaging** working group See the working group's findings report for complete

- Promote the development and implementation of circular business models and networks
- Exploit the potential of mechanical recycling
- Fund research into potential further components of a Circular Economy for packaging (e.g. chemical recycling processes)

Business model

Society

- Provide education as the basis for overarching cooperation with a changed value creation philosophy
- Increase user understanding

Perspectives of the Packaging working group

- Implement design for circularity for efficient and effective resource management
- Create a uniform basis for evaluating the sustainability of packaging alternatives
- Invest in sorting and recycling technology and its further development

Product

Packaging requirements

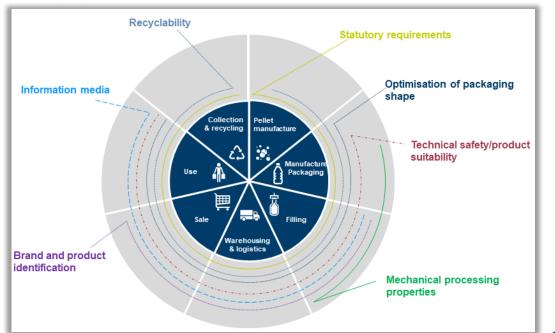
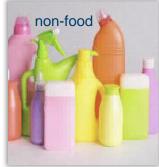


Image: Anna Shvets von Pexels.com


Perspectives of the Packaging working group

- Implement design for circularity for efficient and effective resource management
- Create a uniform basis for evaluating the sustainability of packaging alternatives
- Invest in sorting and recycling technology and its further development

Product

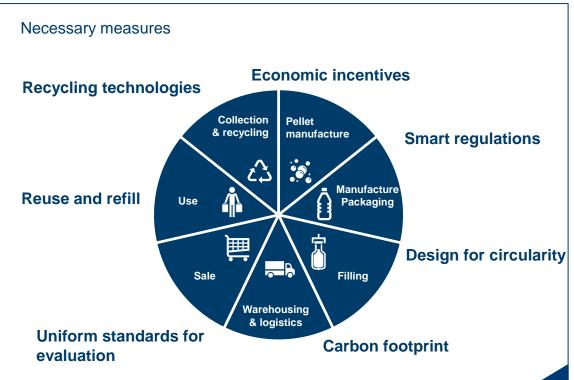


Image: Anna Shvets von Pexels.com

Perspectives of the Traction Batteries working group

- Implement design for circularity to optimise life cycles and take account of the energy balance
- Ensure better data availability for battery passport, digital twin, etc.
- Enable EU-wide circular battery management (incl. European Data Spaces)

Product

Sociotechnical

- Set economic incentives
- Establish key **definitions**, (minimum) standards, recovery rates and obligations
- Create transparency about ecosocial aspects and product and process quality
- Initiate the development of standards, Circular Economy metrics and modelling and process innovation
- Develop European disassembly network

Overview of potential solutions proposed by the Traction Batteries working group See the working group's

findings report for complete

- Promote high-quality circular business models for B2B and B2C
- Promote collaborative exchange of relevant data for implementing R strategies
- Expand disassembly & recycling capacity
- Enable grid integration during (V2G) and after (second life) the first life cycle

Business model

Society

- Establish practical training in circular business models
- Expand basic and applied knowledge in education and academic training
- Strengthen transdisciplinary basic research
- Establish industry-wide agreements on the rollout and use of relevant Circular Economy metrics

Perspectives of the Traction Batteries working group

Sociotechnical

- Set economic incentives
- Establish key definitions, (minimum) standards, recovery rates and obligations
- Create transparency about ecosocial aspects and product and process quality
- Initiate the development of standards, Circular Economy metrics and modelling and process innovation
- Develop European disassembly network

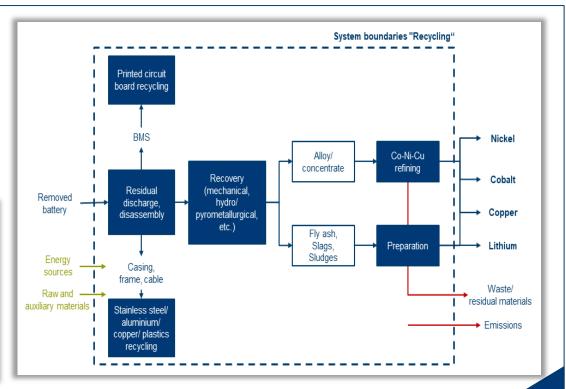


Image: Wikimedia.org | snappygoat.com

Circular business models

- Creation of innovation spaces, within and across companies (value networks)
- Data-driven use- and results-oriented service business models
- Circular redesign of products as a business model component

Standardisation

- Classification of used and remanufactured products
- Development of quality standards for remanufactured products
- Specifications for recycled material content and quality
- KPIs
- CE-metrics

Transparency

- Make CE-relevant information (e.g. product passport) commercially available
- Exchange of relevant data and information between (new) actors
- Encourage purchasing decisions in favour of sustainable products and business models via meaningful labelling for consumer

Regulatory Instruments

- Unified regulatory framework with CE focus
- Coherent product policy at national and EU level (e.g. Design for CE; Digital Product ID)
- Qualitative recycling rates

Economic incentives

- Direct financial assistance for pilot projects and research with clear environmental benefits
- Promotion of novel business models
- Overhaul of tax rules(Ex'tax):
 - Levying higher duties on resources and emissions
 - Reduce tax burdens for businesses in relation to the factor "labor" (e.g. personnel, services)

Infrastructure for reuse, continued use and recycling

- Expansion and development of infrastructure for reuse, continued use and recycling
- Dissemination of digital technologies for material identification and sorting

Technical development and research

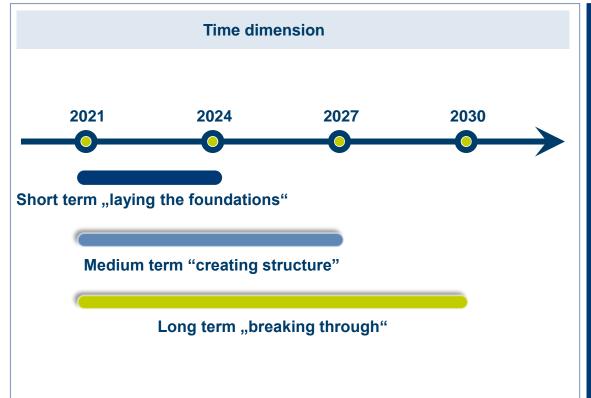
- Development of relevant material, product and process innovations with an environmental benefit
- Methods & tools for CE implementation, including:
 - Development of metrics
 - Model-based decision-making platforms
 - Digital twins
- Research funding

Public procurement

 Setting strategic objectives and binding targets for used, remanufactured and recycled products using a practical, science-based decision-making aid

Institutional embedding

- Provide a central institutional body with the aim of ensuring Germany's transformation to a Circular Economy
 - Knowledge sharing
 - Create new connections between actors
 - Embedding the CE more widely and set it in a European context



Education and knowledge transfer

- Provide CE-relevant education and training, including:
 - Including CE in curricula
 - New courses of study and vocational training
 - Transformative learning
 - Real-world laboratories
- Knowledge transfer to society/population and the world

Concrete recommendations for action for politics, business and science were elaborated into a roadmap with time horizons

- · Circular business models
- Standardisation
- Transparency
- Regulatory instruments
- Economic incentives
- Infrastructure for reuse, continued use and recycling
- Technical development and research
- Public procurement
- Institutionalisation Education and knowledge transfer

